Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Odległość punktu od prostej

Zadania dla liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  2 pkt ⋅ Numer: pp-20599 ⋅ Poprawnie: 32/163 [19%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Prosta k:ax+by+c=0 względem punktu A=(x_a,y_a) jest tak położona, że d(A, k)=\sqrt{7}. Wyznacz c.

Podaj najmniejsze możliwe c.

Dane
x_a=4
y_a=0
a=4
b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 1.2 (1 pkt)
 Podaj największe możliwe c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  2 pkt ⋅ Numer: pp-20600 ⋅ Poprawnie: 17/135 [12%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 » Prosta k:ax+by+c=0 względem punktu A=(x_a,y_a) jest tak położona, że d(A, k)=15. Wyznacz c.

Podaj najmniejsze możliwe c.

Dane
x_a=-3
y_a=-4
a=4
b=-3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 2.2 (1 pkt)
 Podaj największe możliwe c.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  2 pkt ⋅ Numer: pp-20601 ⋅ Poprawnie: 36/111 [32%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 « Prosta k:8x-15y-17=0 względem punktu A=(x_a,3) jest tak położona, że d(A, k)=13.

Podaj najmniejsze możliwe x_a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 3.2 (1 pkt)
 Podaj największe możliwe x_a.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  4 pkt ⋅ Numer: pp-30193 ⋅ Poprawnie: 28/61 [45%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 Trójkąt ABC ma wierzchołki: A=(x_a,y_a), B=(x_b,y_b) i C=(x_c,y_c).

Wyznacz długość najkrótszej wysokości tego trójkąta.

Dane
x_a=-4
y_a=-2
x_b=-4
y_b=-3
x_c=0
y_c=-5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 4.2 (2 pkt)
 Wyznacz długość najdłuższej wysokości tego trójkąta.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  6 pkt ⋅ Numer: pp-30194 ⋅ Poprawnie: 6/58 [10%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 » Trapez ABCD ma wierzchołki: A=(1,-7), B=(1,-2), C=(-2,-1) i D=(-17,-1). Wyznacz równanie prostej y=ax+b zawierającej najdłuższy bok tego trapezu.

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (2 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.3 (2 pkt)
 Wyznacz odległość podstaw tego trapezu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  4 pkt ⋅ Numer: pp-30195 ⋅ Poprawnie: 6/103 [5%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Do prostej o równaniu 2x+y=0 należy punkt P=(m,-6).

Podaj m.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (2 pkt)
 Punkt Q=(p, -1) jest odległy od tej prostej o 3\sqrt{5}.

Podaj najmniejsze możliwe p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.3 (1 pkt)
 Podaj największe możliwe p.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm