Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Własności funkcji wykładniczej. Wykres funkcji wykładniczej

Zadania dla liceum ogólnokształcącego - poziom rozszerzony

 

Zadanie 1.  1 pkt ⋅ Numer: pr-10161 ⋅ Poprawnie: 84/145 [57%] Rozwiąż 
Podpunkt 1.1 (0.2 pkt)
 » Zbiorem wartości funkcji f(x)=\left|a+5^{3-x}\right| jest zbiór postaci:
Dane
a=-6
Odpowiedzi:
A. \langle p, q\rangle B. (-\infty, p\rangle
C. (p,+\infty) D. (p, q)
E. \langle p,+\infty) F. (-\infty, p)
Podpunkt 1.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pr-10162 ⋅ Poprawnie: 69/124 [55%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Punkt P=\left(x_0,\frac{1}{y_0}\right) należy do wykresu funkcji wykładniczej określonej wzorem y=a^x.

Do wykresu tej funkcji należy też punkt:

Dane
x_0=10
y_0=32
Odpowiedzi:
A. \left(11,\frac{1}{16}\right) B. \left(9,\frac{\sqrt{2}}{32\sqrt{2}}\right)
C. \left(9,\frac{1}{64}\right) D. \left(11,\frac{1}{32\sqrt{2}}\right)
Zadanie 3.  1 pkt ⋅ Numer: pr-10163 ⋅ Poprawnie: 14/21 [66%] Rozwiąż 
Podpunkt 3.1 (0.2 pkt)
 Dana jest funkcja określona wzorem f(x)=\frac{1}{0,6^{|x|}}+b.

Zbiór ZW_f ma postać:

Dane
b=-6
Odpowiedzi:
A. (-\infty, p)\cup(q,+\infty) B. (-\infty, p\rangle
C. \langle p,+\infty) D. \langle p, q\rangle
E. (-\infty, p) F. (p,+\infty)
Podpunkt 3.2 (0.8 pkt)
 Zapisz ten zbiór w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pr-10165 ⋅ Poprawnie: 43/50 [86%] Rozwiąż 
Podpunkt 4.1 (0.2 pkt)
 Dziedziną funkcji określonej wzorem g(x)=\frac{3\sqrt{3}}{\sqrt{\left(\frac{1}{a}\right)^x-b}} jest zbiór postaci:
Dane
a=4
b=64
Odpowiedzi:
A. (p, q) B. (p,+\infty)
C. \langle p, q\rangle D. (-\infty, p\rangle
E. (-\infty, p) F. \langle p,+\infty)
Podpunkt 4.2 (0.8 pkt)
 Zapisz tę dziedzinę w postaci sumy przedziałów. Podaj najmniejszy z końców liczbowych tych przedziałów.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pr-10166 ⋅ Poprawnie: 16/39 [41%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
« Do wykresu funkcji określonej wzorem g(x)=-\frac{a^x}{b} należą punkty P=(-2,4) i Q=(-1,3).

Wówczas:

Odpowiedzi:
A. a-b=3 B. a\cdot b=-3
C. a-b=1\frac{7}{36} D. a\cdot b=-1\frac{11}{16}
Zadanie 6.  2 pkt ⋅ Numer: pr-20326 ⋅ Poprawnie: 6/16 [37%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 « Dana jest funkcja f(x)= \begin{cases} 3^{-x} \text{, dla } x \lessdot 0 \\ -(x+a)^2+b \text{, dla } x\geqslant 0 \end{cases} . Ustal liczbę rozwiąząń równania f(x)=m w zależności od wartości parametru m.

Podaj długość przedziału tych wartości m, dla których równanie to ma dokładnie trzy rozwiązania.

Dane
a=-5
b=26
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (1 pkt)
 Podaj największą wartość m, dla której równanie ma dokładnie dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  2 pkt ⋅ Numer: pr-20327 ⋅ Poprawnie: 6/10 [60%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 « Dla jakich wartości parametru m równanie \left(\frac{\sqrt{5}}{5}\right)^{3x}=2^{am+b} ma rozwiązanie dodatnie?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=2
b=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  2 pkt ⋅ Numer: pr-20328 ⋅ Poprawnie: 5/27 [18%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
 « Dla jakich wartości parametru m równanie 2x+a=2^{m-1} ma rozwiązanie dodatnie?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=128
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  2 pkt ⋅ Numer: pr-20500 ⋅ Poprawnie: 13/33 [39%] Rozwiąż 
Podpunkt 9.1 (2 pkt)
 « Punkt P=\left(p,\frac{1}{q}\right) należy do wykresu funkcji wykładniczej f(x)=a^x. Oblicz wartość tej funkcji dla argumentu \frac{m}{2}.

Zakoduj kolejno trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego otrzymanego wyniku.

Dane
p=8
q=625
m=-1
Odpowiedź:
Wpisz odpowiedź:  (wpisz odpowiedź tekstową)
Zadanie 10.  4 pkt ⋅ Numer: pr-30228 ⋅ Poprawnie: 22/97 [22%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 « Naszkicuj wykresy funkcji f(x)=2^x i g(x)=|f(x-a)-b|.

Podaj najmniejszą wartość funkcji g w przedziale \langle p,q\rangle.

Dane
a=-3
b=8
p=-3
q=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.2 (2 pkt)
 Podaj największą wartość funkcji g w tym przedziale.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 10.3 (1 pkt)
 Podaj miejsce zerowe funkcji g.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  4 pkt ⋅ Numer: pr-30232 ⋅ Poprawnie: 3/12 [25%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Dane jest równanie \left|\frac{a^{x+1}-1}{a^x}\right|=m z parametrem m\in\mathbb{R}.

Wyznacz najmniejszą wartość m, dla której równanie to ma dokładnie jedno rozwiązanie.

Dane
a=6
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.2 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, dla której równanie ma dokładnie jedno rozwiązanie.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 11.3 (2 pkt)
 Wyznacz zbiór tych wartości parametru m, dla których równanie to ma dokładnie dwa rozwiązania.

Zbiór ten zapisz w postaci przedziału. Podaj długość tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  3 pkt ⋅ Numer: pr-30233 ⋅ Poprawnie: 13/30 [43%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Dana jest funkcja g(x)=|2^{x-1}-3| oraz x_0=\log_{2}{a}+\log_{2}{a}\cdot \log_{a}{2}.

Oblicz g(x_0).

Dane
a=64
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.2 (1 pkt)
 Wyznacz te wartości x, dla których funkcja g przyjmuje wartości większe od g(x_0).

Podaj najmniejszą dodatnią liczbę całkowitą, która do tego zbioru nie należy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 12.3 (1 pkt)
 Podaj największą dodatnią liczbę, która do tego zbioru nie należy.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  4 pkt ⋅ Numer: pr-30234 ⋅ Poprawnie: 5/22 [22%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 « Wykres funkcji f(x)=c^x zawiera punkt A=(2\log_{2}{a},b).

Podaj c.

Dane
a=5
b=25
q=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.2 (2 pkt)
 Funkcja g określona jest wzorem g(x)=|f(x+1)-q|.
Naszkicuj wykres funkcji g i na jego podstawie ustal, dla których m równanie g(x)=m ma dokładnie jedno rozwiązanie.

Ile liczb całkowitych m\in\langle -10,10\rangle spełnia warunki zadania?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 13.3 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, która spełnia warunki zadania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 14.  4 pkt ⋅ Numer: pr-30235 ⋅ Poprawnie: 8/50 [16%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 «« Wykres funkcji f(x)=a^x zawiera punkt A=\left(-\frac{3}{2},\frac{1}{8}\right).

Podaj a.

Dane
b=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 14.2 (2 pkt)
 Funkcja g określona jest wzorem g(x)=|b-f(x-1)|.
Naszkicuj wykres funkcji g i na jego podstawie ustal, dla których m równanie g(x)=m ma dokładnie jedno rozwiązanie.

Ile liczb całkowitych m\in\langle -10,10\rangle spełnia warunki zadania?

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 14.3 (1 pkt)
 Podaj najmniejszą dodatnią wartość m, która spełnia warunki zadania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 15.  4 pkt ⋅ Numer: pr-30236 ⋅ Poprawnie: 4/9 [44%] Rozwiąż 
Podpunkt 15.1 (2 pkt)
 Dane są funkcje f(x)=2^{ax-4} i g(x)=5-\left(\frac{1}{2}\right)^{ax-6}. Rozwiąż nierówność f(x)\leqslant g(x).

Jaka największa liczba spełnia tę nierówność?

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 15.2 (2 pkt)
 Podaj najmniejszą liczbę spełniającą tę nierówność.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 16.  4 pkt ⋅ Numer: pr-30237 ⋅ Poprawnie: 6/22 [27%] Rozwiąż 
Podpunkt 16.1 (2 pkt)
 « Dane są funkcje f(x)=1-2^{x+a} i g(x)=x^2+(2a-2)x+a^2-2a. Rozwiąż graficznie nierówność f(x)\leqslant g(x).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych końców przedziałów, które są liczbami.

Dane
a=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 16.2 (2 pkt)
 Podaj sumę kwadratów wszystkich tych końców przedziałów, które są liczbami.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 17.  4 pkt ⋅ Numer: pr-30238 ⋅ Poprawnie: 5/24 [20%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 « Naszkicuj wykres funkcji f(x)=\left|a^{x+1}-b\right|.

Podaj największą wartość tej funkcji w przedziale \langle -1,2\rangle.

Dane
a=7
b=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 17.2 (1 pkt)
 Podaj najmniejszą wartość tej funkcji w przedziale \langle -1,2\rangle.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 17.3 (2 pkt)
 Dla jakich wartości parametru m równanie f(x)=m ma dwa rozwiązania?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 18.  4 pkt ⋅ Numer: pr-30239 ⋅ Poprawnie: 4/13 [30%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 » Naszkicuj wykres funkcji f(x)=\left|a^{2-x}-b\right|.

Podaj największą wartość tej funkcji w przedziale \langle -1,2\rangle.

Dane
a=7
b=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 18.2 (1 pkt)
 Podaj najmniejszą wartość tej funkcji w przedziale \langle -1,2\rangle.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 18.3 (2 pkt)
 Dla jakich wartości parametru m równanie f(x)=m ma dwa rozwiązania?

Rozwiązanie zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 19.  4 pkt ⋅ Numer: pr-30229 ⋅ Poprawnie: 2/14 [14%] Rozwiąż 
Podpunkt 19.1 (2 pkt)
 Dane są funkcje f(x)=-m^x+a oraz g(x)=m^{|x-1|}+a. Punkt B=(2, 0) należy do wykresu funkcji f.

Podaj m.

Dane
a=7
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 19.2 (1 pkt)
 Dla jakich wartości parametru p równanie g(x)=p ma rozwiązania.

Podaj najmniejsze możliwe p.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 19.3 (1 pkt)
 Podaj najmniejszą całkowitą wartość parametru p, dla której równanie g(x)=p ma dwa rozwiązania.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 20.  6 pkt ⋅ Numer: pr-30230 ⋅ Poprawnie: 1/39 [2%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 « Dane jest równanie (k-1)^2x^2+(k-2)x+1=0, gdzie k\neq -1. Funkcja g przyporządkowuje liczbie k liczbę g(k)=2^{\frac{1}{x_1}+\frac{1}{x_2}}, gdzie x_1,x_2 są różnymi pierwiastkami tego równania. Wyznacz D_g=(a, b).

Podaj a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 20.2 (1 pkt)
 Podaj b.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 20.3 (2 pkt)
 Zbiorem wartości funkcji g jest przedział ZW_g=(\sqrt[3]{c},d).

Podaj c.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 20.4 (2 pkt)
 Podaj d.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 21.  4 pkt ⋅ Numer: pr-30231 ⋅ Poprawnie: 23/62 [37%] Rozwiąż 
Podpunkt 21.1 (2 pkt)
 Na rysunku pokazano wykres funkcji f(x)=-a^x+3.

Wyznacz a.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 21.2 (2 pkt)
 Naszkicuj wykres funkcji g(x)=a^{|x+5|}-8.

Podaj najmniejszą wartość funkcji g.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm