Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Rozwiązywanie nierówności wykładniczych

Zadania dla liceum ogólnokształcącego - poziom rozszerzony

 

Zadanie 1.  1 pkt ⋅ Numer: pr-10164 ⋅ Poprawnie: 64/83 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 » Rozwiązaniem nierówności 7^{x+a}\leqslant 3 jest pewien przedział liczbowy, którego jednym z końców jest liczba postaci \log_{p}{b}+c, gdzie p,b,c\in\mathbb{Z}.

Podaj wartości parametrów p, b i c.

Dane
a=-5
Odpowiedzi:
p= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  2 pkt ⋅ Numer: pr-20317 ⋅ Poprawnie: 19/56 [33%] Rozwiąż 
Podpunkt 2.1 (2 pkt)
 Rozwiąż nierówność 3^{6ax}-4\cdot 27^{2ax-\frac{4}{3}}+9^{3ax-\frac{3}{2}} \lessdot 80 .

Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.

Dane
a=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 3.  2 pkt ⋅ Numer: pr-20318 ⋅ Poprawnie: 24/36 [66%] Rozwiąż 
Podpunkt 3.1 (2 pkt)
 Dla jakich wartości x funkcja f(x)=2^{3x+a}-b przyjmuje wartości większe od c?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=-3
b=255
c=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 4.  2 pkt ⋅ Numer: pr-20319 ⋅ Poprawnie: 28/39 [71%] Rozwiąż 
Podpunkt 4.1 (2 pkt)
 « Dla jakich wartości x funkcja f(x)=\frac{1}{4}\cdot 4^{2x+a}-b przyjmuje wartości większe od c?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=-3
b=65535
c=1
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 5.  4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 21/29 [72%] Rozwiąż 
Podpunkt 5.1 (2 pkt)
 « Dla jakich wartości x funkcja f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze od 2?

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=4
b=-4
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 5.2 (2 pkt)
 Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 6.  4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 9/16 [56%] Rozwiąż 
Podpunkt 6.1 (2 pkt)
 Wykres funkcji f(x)=2^x-a jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g i rozwiąż nierówność f(x)\geqslant g(x).

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=8
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 6.2 (2 pkt)
 Ile liczb naturalnych z przedziału \langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  4 pkt ⋅ Numer: pr-30226 ⋅ Poprawnie: 6/16 [37%] Rozwiąż 
Podpunkt 7.1 (2 pkt)
 » Wykres funkcji f(x)=\frac{2^{x-1}-a}{4} jest symetryczny względem osi Ox do wykresu funkcji g.
Napisz wzór funkcji g. Rozwiąż nierówność g(x) \lessdot 0.

Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.

Dane
a=16
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
 Ile liczb całkowitych z przedziału (-10,10) spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  4 pkt ⋅ Numer: pr-30227 ⋅ Poprawnie: 22/74 [29%] Rozwiąż 
Podpunkt 8.1 (2 pkt)
Dana jest funkcja f(x)=\left|2^{x-1}-3\right|.

Oblicz f(1+\log_{2}{5}).

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Rozwiąż nierówność f(x) > f(1+\log_{2}{5}).

Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych końców przedziałów, które są liczbami całkowitymi.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Ile liczb naturalnych nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm