Rozwiązywanie nierówności wykładniczych
Zadania dla liceum ogólnokształcącego - poziom rozszerzony
nierówności wykładnicze
porównywanie potęg
własności funkcji wykładniczej
Zadanie 1. 1 pkt ⋅ Numer: pr-10164 ⋅ Poprawnie: 64/83 [77%]
Rozwiąż
Podpunkt 1.1 (1 pkt)
» Rozwiązaniem nierówności
7^{x+a}\leqslant 3
jest pewien przedział liczbowy, którego jednym z końców jest liczba postaci
\log_{p}{b}+c ,
gdzie
p,b,c\in\mathbb{Z} .
Podaj wartości parametrów p , b i
c .
Dane
a=-5
Odpowiedzi:
Zadanie 2. 2 pkt ⋅ Numer: pr-20317 ⋅ Poprawnie: 19/56 [33%]
Rozwiąż
Podpunkt 2.1 (2 pkt)
Rozwiąż nierówność
3^{6ax}-4\cdot 27^{2ax-\frac{4}{3}}+9^{3ax-\frac{3}{2}} \lessdot 80
.
Odpowiedź zapisz w postaci przedziału. Podaj prawy koniec tego przedziału.
Dane
a=2
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 3. 2 pkt ⋅ Numer: pr-20318 ⋅ Poprawnie: 24/36 [66%]
Rozwiąż
Podpunkt 3.1 (2 pkt)
Dla jakich wartości
x funkcja
f(x)=2^{3x+a}-b przyjmuje wartości większe od
c ?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=-3
b=255
c=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 4. 2 pkt ⋅ Numer: pr-20319 ⋅ Poprawnie: 28/39 [71%]
Rozwiąż
Podpunkt 4.1 (2 pkt)
« Dla jakich wartości
x funkcja
f(x)=\frac{1}{4}\cdot 4^{2x+a}-b przyjmuje wartości
większe od
c ?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=-3
b=65535
c=1
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 5. 4 pkt ⋅ Numer: pr-30224 ⋅ Poprawnie: 21/29 [72%]
Rozwiąż
Podpunkt 5.1 (2 pkt)
« Dla jakich wartości
x funkcja
f(x)=\log_{3}{(ax+b)} przyjmuje wartości mniejsze
od
2 ?
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=4
b=-4
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 5.2 (2 pkt)
Podaj prawy koniec tego przedziału.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 6. 4 pkt ⋅ Numer: pr-30225 ⋅ Poprawnie: 9/16 [56%]
Rozwiąż
Podpunkt 6.1 (2 pkt)
Wykres funkcji
f(x)=2^x-a jest symetryczny względem
osi
Ox do wykresu funkcji
g .
Napisz wzór funkcji
g i rozwiąż nierówność
f(x)\geqslant g(x) .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=8
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 6.2 (2 pkt)
Ile liczb naturalnych z przedziału
\langle 1,20\rangle spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 7. 4 pkt ⋅ Numer: pr-30226 ⋅ Poprawnie: 6/16 [37%]
Rozwiąż
Podpunkt 7.1 (2 pkt)
» Wykres funkcji
f(x)=\frac{2^{x-1}-a}{4} jest
symetryczny względem osi
Ox do wykresu funkcji
g .
Napisz wzór funkcji
g . Rozwiąż nierówność
g(x) \lessdot 0 .
Rozwiązanie zapisz w postaci przedziału. Podaj lewy koniec tego przedziału.
Dane
a=16
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 7.2 (2 pkt)
Ile liczb całkowitych z przedziału
(-10,10)
spełnia tę nierówność?
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Zadanie 8. 4 pkt ⋅ Numer: pr-30227 ⋅ Poprawnie: 22/74 [29%]
Rozwiąż
Podpunkt 8.1 (2 pkt)
Dana jest funkcja
f(x)=\left|2^{x-1}-3\right| .
Oblicz f(1+\log_{2}{5}) .
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.2 (1 pkt)
Rozwiąż nierówność
f(x) > f(1+\log_{2}{5}) .
Rozwiązanie zapisz w postaci sumy przedziałów. Podaj sumę wszystkich tych
końców przedziałów, które są liczbami całkowitymi.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
Podpunkt 8.3 (1 pkt)
Ile liczb naturalnych nie spełnia tej nierówności.
Odpowiedź:
Wpisz odpowiedź:
(liczba zapisana dziesiętnie)
☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat
Masz pytania? Napisz: k42195@poczta.fm