Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Graniastosłupy - rozwiązywanie graniastosłupów

Zadania dla klasy trzeciej liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-11419 ⋅ Poprawnie: 356/459 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Podstawą graniastosłupa o wysokości h jest prostokąt o wymiarach a \times b. Zapisz długość przekątnej tego graniastosłupa w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{N}.

Podaj liczby m i n.

Dane
h=4
a=9
b=3
Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11439 ⋅ Poprawnie: 478/837 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Na rysunku pokazano granastosłup prosty, który ma w podstawie prostokąt:
Zapisz wysokość tego graniastosłupa w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Dane
\alpha=30^{\circ}
|AB|=32
|BC|=24
Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-11364 ⋅ Poprawnie: 267/360 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkie krawędzie graniastosłupa prawidłowego trójkątnego mają długość \sqrt{a}. Zapisz pole powierzchni całkowitej tego graniastosłupa w najprostszej postaci \frac{m+n\sqrt{p}}{k}, gdzie m,n,p,k\in\mathbb{Z}.

Podaj liczby m, n, p i k.

Dane
a=12
Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
p= (wpisz liczbę zapisaną dziesiętnie)
k= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11369 ⋅ Poprawnie: 352/473 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wszystkie krawędzie graniastosłupa prawidłowego sześciokątnego mają długość a. Zapisz pole powierzchni całkowitej tego graniastosłupa w najprostszej postaci m+n\sqrt{p}, gdzie m,n,p\in\mathbb{Z}.

Podaj liczbę m, n i p.

Dane
a=16
Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
p= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11521 ⋅ Poprawnie: 387/900 [43%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Stosunek pola powierzchni całkowitej jednego z dwóch sześcianów, do pola powierzchni jednej ściany drugiego sześcianu, jest równy 84. Zapisz stosunek objętości mniejszego z sześcianów do objętości większego sześcianu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-11447 ⋅ Poprawnie: 97/132 [73%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Prostopadłościan P_1 ma wymiary m\times (m+2)\times (m+4), a prostopadłościan P_2 wymiary (m-2)\times m\times (m+2). Objętość prostopadłościanu P_1 jest większa od objetości prostopadłościanu P_2 o p\%.

Podaj liczbę p.

Dane
m=17
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11367 ⋅ Poprawnie: 159/255 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono sześcian.

Podaj miarę stopniową kąta zaznaczonego na rysunku.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11368 ⋅ Poprawnie: 377/507 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Przekątna sześcianu ma długość d. Zapisz objętość tego sześcianu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.

Podaj liczbę a.

Dane
d=15\sqrt{3}=25.98076211353316
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-11363 ⋅ Poprawnie: 218/296 [73%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Kiedy zwiększono o 1 długość każdej krawędzi sześcianu, to pole powierzchni otrzymanej bryły wzrosło o m.

Jaką długość miała krawędź tego sześcianu (przed wydłużeniem)?

Dane
m=\frac{53}{2}=26.50000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-11361 ⋅ Poprawnie: 129/198 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prostopadłościan o wysokości h cm ma w podstawie prostokąt o bokach długości a cm i b cm.

Wyznacz miarę stopniową kąta nachylenia przekątnej tego prostopadłościanu do płaszczyzny jego podstawy.

Dane
h=130\sqrt{3}=225.16660498395405
a=66
b=112
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11362 ⋅ Poprawnie: 256/396 [64%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Trzy kwadraty o boku długości a tworzą powierzchnię boczną graniastosłupa.

Oblicz objętość tego graniastosłupa.

Dane
a=9\sqrt{3}=15.58845726811990
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11366 ⋅ Poprawnie: 234/282 [82%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Graniastosłup ma a krawędzi, b ścian i c wierzchołków, przy czym a+b+c=224.

Wyznacz ilość wierzchołków jego podstawy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  1 pkt ⋅ Numer: pp-11516 ⋅ Poprawnie: 699/970 [72%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Suma długości wszystkich krawędzi sześcianu jest równa 84\sqrt{3}.

Oblicz pole powierzchni całkowitej tego sześcianu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 14.  1 pkt ⋅ Numer: pp-11365 ⋅ Poprawnie: 215/260 [82%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Prostopadłościan P_1 ma wymiary m\times (m+2)\times (m+4), a prostopadłościan P_2 wymiary (m-2)\times m\times (m+2). Objętość prostopadłościanu P_2 jest mniejsza od objetości prostopadłościanu P_1 o p\%.

Podaj liczbę p.

Dane
m=20
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 15.  1 pkt ⋅ Numer: pp-11517 ⋅ Poprawnie: 628/1087 [57%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Przekątna ściany bocznej graniastosłupa trójkątnego prawidłowego ma długość d=32 i tworzy z jego krawędzią boczną kąt o mierze \alpha=30^{\circ}:

Oblicz objętość tego graniastosłupa.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 16.  1 pkt ⋅ Numer: pp-11549 ⋅ Poprawnie: 90/170 [52%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 (1 pkt) W graniastosłupie trójkątnym prawidłowym krawędź boczna jest dwa razy dłuższa od krawędzi podstawy. Suma długości wszystkich krawędzi tego graniastosłupa jest równa 108.

Pole powierzchni całkowitej tego graniastosłupa jest równe:

Odpowiedzi:
A. 324+27\sqrt{3} B. 567
C. 648+54\sqrt{3} D. \frac{972+81\sqrt{3}}{4}
E. 972+81\sqrt{3} F. \frac{972+81\sqrt{3}}{2}
Zadanie 17.  1 pkt ⋅ Numer: pp-11775 ⋅ Poprawnie: 587/864 [67%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Dany jest graniastosłup prawidłowy czworokątny, w którym krawędź podstawy ma długość \frac{9\sqrt{6}}{2}. Przekątna tego graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem \alpha takim, że \cos\alpha=\frac{3\sqrt{3}}{4}.

Długość przekątnej tego graniastosłupa jest równa:

Odpowiedzi:
A. 12\sqrt{3} B. 4\sqrt{3}
C. 12 D. 24
Zadanie 18.  1 pkt ⋅ Numer: pp-11801 ⋅ Poprawnie: 528/934 [56%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Dany jest graniastosłup prawidłowy sześciokątny ABCDEFA'B'C'D'E'F', w którym krawędź podstawy ma długość 11. Przekątna AD' tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem D'AD o mierze 30^{\circ} (zobacz rysunek).

Pole powierzchni ściany bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. \frac{242\sqrt{6}}{3} B. \frac{121\sqrt{6}}{3}
C. \frac{242}{3} D. \frac{242\sqrt{3}}{3}
E. \frac{484\sqrt{3}}{3} F. \frac{121\sqrt{3}}{3}
Zadanie 19.  1 pkt ⋅ Numer: pp-11847 ⋅ Poprawnie: 467/628 [74%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Dany jest sześcian ABCDEFGH o krawędzi długości 12. Wewnątrz tego sześcianu znajduje się punkt P (zobacz rysunek).

Suma odległości punktu P od wszystkich ścian sześcianu ABCDEFGH jest równa:

Odpowiedzi:
A. 60 B. 48
C. 36 D. 24
E. 18 F. 32
Zadanie 20.  1 pkt ⋅ Numer: pp-11875 ⋅ Poprawnie: 140/185 [75%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Podstawą graniastosłupa prostego jest romb o przekątnych długości 24 cm i 3 cm. Wysokość tego graniastosłupa jest krótsza od dłuższej przekątnej rombu o 17 cm.

Wtedy objętość tego graniastosłupa jest równa:

Odpowiedzi:
A. 126 B. 168
C. 252 D. 378
E. \frac{756}{5} F. 189
Zadanie 21.  1 pkt ⋅ Numer: pp-11900 ⋅ Poprawnie: 170/199 [85%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Liczba wszystkich krawędzi graniastosłupa jest równa 24.

Liczba wszystkich wierzchołków tego graniastosłupa jest równa:

Odpowiedzi:
A. 17 B. 16
C. 11 D. 18
E. 21 F. 19
Zadanie 22.  1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 126/223 [56%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{63}{23}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 21 B. 30
C. 28 D. 18
E. 27 F. 23
Zadanie 23.  1 pkt ⋅ Numer: pp-11978 ⋅ Poprawnie: 36/61 [59%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Dany jest sześcian \mathcal{F} o krawędzi długości a i objętości V oraz sześcian \mathcal{G} o krawędzi długości 5a.

Objętość sześcianu \mathcal{G} jest równa:

Odpowiedzi:
A. \frac{125}{8}V B. \frac{125}{6}V
C. 125V D. \frac{125}{3}V
E. \frac{125}{2}V F. \frac{125}{4}V
Zadanie 24.  1 pkt ⋅ Numer: pp-12019 ⋅ Poprawnie: 221/344 [64%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Przekątna ściany sześcianu ma długość 10\sqrt{2}. Objętość tego sześcianu jest równa:
Odpowiedzi:
A. 200 B. 1000\sqrt{2}
C. 2000 D. 500\sqrt{2}
E. 50\sqrt{2} F. 1000
Zadanie 25.  1 pkt ⋅ Numer: pp-12020 ⋅ Poprawnie: 231/344 [67%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości 24. Przekątna tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem \alpha takim, że \tan\alpha=4 (zobacz rysunek).

Wysokość tego graniastosłupa jest równa:

Odpowiedzi:
A. 192\sqrt{2} B. 96\sqrt{2}
C. 24\sqrt{2} D. 48\sqrt{2}
E. 384\sqrt{2} F. 96
Zadanie 26.  1 pkt ⋅ Numer: pp-12047 ⋅ Poprawnie: 48/61 [78%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Przekątna sześcianu ma długość 6\sqrt{3}.

Wtedy objętość tego sześcianu jest równa:

Odpowiedzi:
A. 36\sqrt{6} B. 108\sqrt{2}
C. 216\sqrt{2} D. 216
E. 108 F. 72\sqrt{3}
Zadanie 27.  1 pkt ⋅ Numer: pp-12103 ⋅ Poprawnie: 17/24 [70%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Graniastosłup prawidłowy ma 78 krawędzi. Długość każdej z tych krawędzi jest równa 2.

Pole powierzchni bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. 131 B. 117
C. 113 D. 102
E. 100 F. 91
G. 104 H. 124
Zadanie 28.  1 pkt ⋅ Numer: pp-12130 ⋅ Poprawnie: 20/30 [66%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 8\sqrt{2} (zobacz rysunek).

Pole powierzchni całkowitej tego graniastosłupa jest równe:

Odpowiedzi:
A. 768+384\sqrt{6} B. 768+384\sqrt{3}
C. 768+384\sqrt{2} D. 512+768\sqrt{3}
E. 768+256\sqrt{3} F. 384+384\sqrt{3}
G. 512+384\sqrt{3} H. 768+768\sqrt{3}
Zadanie 29.  1 pkt ⋅ Numer: pp-12131 ⋅ Poprawnie: 7/15 [46%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Przekątna sześcianu jest równa 15\sqrt{2}.

Wynika stąd, że objętość tego sześcianu jest równa:

Odpowiedzi:
A. 1125\sqrt{6} B. 2250\sqrt{6}
C. 2250\sqrt{2} D. 1500\sqrt{6}
E. 750\sqrt{6} F. 1500
G. 2250\sqrt{6} H. 750\sqrt{2}
Zadanie 30.  1 pkt ⋅ Numer: pp-12153 ⋅ Poprawnie: 87/121 [71%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Długości trzech wychodzących z jednego wierzchołka krawędzi prostopadłościanu są trzema kolejnymi liczbami naturalnymi nieparzystymi. Najdłuższa krawędź tego prostopadłościanu ma długość 13.

Pole powierzchni całkowitej tego prostopadłościanu jest równe:

Odpowiedzi:
A. 718 B. 738
C. 720 D. 727
E. 721 F. 711
G. 703 H. 733
Zadanie 31.  1 pkt ⋅ Numer: pp-12154 ⋅ Poprawnie: 60/120 [50%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Dany jest prostopadłościan ABCDEFGH, w którym podstawy ABCD i EFGH są kwadratami o boku długości 6. Przekątna BH tego prostopadłościanu tworzy z przekątną AH ściany bocznej ADHE kąt o mierze 60^{\circ} (zobacz rysunek).

Przekątna BH tego prostopadłościanu ma długość równą:

Odpowiedzi:
A. \sqrt{6} B. 4\sqrt{3}
C. 4\sqrt{6} D. 6
E. 2\sqrt{6} F. 2\sqrt{3}
Zadanie 32.  1 pkt ⋅ Numer: pp-12381 ⋅ Poprawnie: 103/180 [57%] Rozwiąż 
Podpunkt 32.1 (1 pkt)
 Długości trzech krawędzi wychodzących z jednego wierzchołka prostopadłościanu są trzema kolejnymi parzystymi liczbami naturalnymi. Najdłuższa krawędź tego prostopadłościanu ma długość p+16.

Objętość tego prostopadłościanu jest równa:

Odpowiedzi:
A. p^3+44p^2+580p+2688 B. p^3+42p^2+584p+2688
C. p^3+42p^2+578p+2560 D. p^3+44p^2+584p+2688
E. p^3+54p^2+968p+2688 F. p^3+42p^2+580p+2560
Zadanie 33.  1 pkt ⋅ Numer: pp-12398 ⋅ Poprawnie: 206/330 [62%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 Objętość sześcianu jest równa 128\sqrt{2}.

Długość przekątnej tego sześcianu jest równa:

Odpowiedzi:
A. 3\sqrt{6} B. 4\sqrt{6}
C. \frac{8\sqrt{6}}{3} D. 8\sqrt{3}
E. \frac{4\sqrt{6}}{3} F. 2\sqrt{6}
G. 12\sqrt{2} H. 24
Zadanie 34.  2 pkt ⋅ Numer: pp-20794 ⋅ Poprawnie: 41/115 [35%] Rozwiąż 
Podpunkt 34.1 (2 pkt)
 « W sześcianie ABCDA'B'C'D' o krawędzi długości a, punkty P i Q są środkami krawędzi odpowiednio AB i BC, zaś punkt R jest środkiem przekątnej górnej podstawy A'C'.

Oblicz P_{\triangle PQR}.

Dane
a=22\sqrt{2}=31.11269837220809
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 35.  2 pkt ⋅ Numer: pp-20795 ⋅ Poprawnie: 110/305 [36%] Rozwiąż 
Podpunkt 35.1 (2 pkt)
 Wielościan przedstawiony na rysunku jest sześcianem o boku długości a, a punkty A, B i C są środkami parami skośnych jego krawędzi.

Oblicz P_{\triangle ABC}

Dane
a=20\sqrt{2}=28.28427124746190
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 36.  2 pkt ⋅ Numer: pp-20796 ⋅ Poprawnie: 67/343 [19%] Rozwiąż 
Podpunkt 36.1 (1 pkt)
 W graniastosłupie trójkątnym prawidłowym krawędź podstawy ma długość a. Przekątna ściany bocznej tego graniastosłupa tworzy z sąsiednią ścianą boczną kąt o mierze \alpha.

Oblicz długość przekątnej ściany bocznej tego graniastosłupa.

Dane
a=8\sqrt{3}=13.85640646055102
\alpha=30^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.2 (1 pkt)
 Oblicz wysokość tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 37.  2 pkt ⋅ Numer: pp-20797 ⋅ Poprawnie: 52/183 [28%] Rozwiąż 
Podpunkt 37.1 (1 pkt)
 W graniastosłupie trójkątnym prawidłowym ABCA'B'C' punkt P jest środkiem krawędzi AB, a kąt CPC' ma miarę \alpha.

Oblicz wysokość tego graniastosłupa.

Dane
|PC'|=53
\tan\alpha=\frac{45}{28}=1.60714285714286
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 37.2 (1 pkt)
 Oblicz pole powierzchni podstawy tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 38.  2 pkt ⋅ Numer: pp-20798 ⋅ Poprawnie: 35/227 [15%] Rozwiąż 
Podpunkt 38.1 (2 pkt)
 » W graniastosłupie trójkątnym prawidłowym ABCA'B'C' krawędzie boczne mają długość h, a trójkąt BCA' ma obwód długości L.

Oblicz wysokość podstawy tego graniastosłupa.

Dane
h=16\sqrt{3}=27.71281292110204
L=80
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 39.  2 pkt ⋅ Numer: pp-20803 ⋅ Poprawnie: 47/149 [31%] Rozwiąż 
Podpunkt 39.1 (2 pkt)
 « W graniastosłupie sześciokątnym prawidłowym krawędź podstawy ma długość a, zaś stosunek długości najdłuższej przekątnej graniastosłupa do najkrótszej przekątnej podstawy jest równy k.

Oblicz wysokość tego graniastosłupa.

Dane
a=11
k=2
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 40.  2 pkt ⋅ Numer: pp-21060 ⋅ Poprawnie: 212/672 [31%] Rozwiąż 
Podpunkt 40.1 (1 pkt)
 Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 5\sqrt{3}.

Pole powierzchni całkowitej tego graniastosłupa jest równe:

Odpowiedzi:
A. 450+675\sqrt{3} B. 450+450\sqrt{3}
C. 450+225\sqrt{3} D. 450+75\sqrt{3}
E. 450+112\sqrt{3} F. 450+56\sqrt{3}
Podpunkt 40.2 (1 pkt)
 Oblicz sinus kąta nachylenia dłuższej przekątnej tego graniastosłupa do płaszczyzny podstawy tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 41.  2 pkt ⋅ Numer: pp-21105 ⋅ Poprawnie: 203/508 [39%] Rozwiąż 
Podpunkt 41.1 (1 pkt)
 Wysokość graniastosłupa prawidłowego sześciokątnego jest równa 6 (zobacz rysunek). Pole podstawy tego graniastosłupa jest równe 294\sqrt{3}.

14Pole powierzchni jednej ściany bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. 56\sqrt{3} B. 168
C. 112 D. 84
E. 56 F. 84\sqrt{3}
Podpunkt 41.2 (1 pkt)
 Kąt nachylenia najdłuższej przekątnej graniastosłupa prawidłowego sześciokątnego do płaszczyzny jego podstawy jest zaznaczony na rysunku:
Odpowiedzi:
A. C B. A
C. B D. D
Zadanie 42.  4 pkt ⋅ Numer: pp-30312 ⋅ Poprawnie: 25/100 [25%] Rozwiąż 
Podpunkt 42.1 (2 pkt)
 Przekątna prostopadłościanu długości d tworzy z sąsiednimi ścianami bocznymi tego prostopadłościanu kąty o miarach \alpha i \beta.

Oblicz pole powierzchni podstawy tego prostopadłościanu.

Dane
d=106
\cos\alpha=\frac{\sqrt{1513}}{53}=0.73391133353874
\cos\beta=\frac{4\sqrt{130}}{53}=0.86050975479180
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 42.2 (2 pkt)
 Oblicz wysokość tego prostopadłościanu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 43.  4 pkt ⋅ Numer: pp-30315 ⋅ Poprawnie: 16/78 [20%] Rozwiąż 
Podpunkt 43.1 (2 pkt)
 » W graniastosłupie prawidłowym trójkątnym ABCA'B'C' o krawędzi podstawy długości a, punkt P należy do odcinka CA' i spełnia warunek BP\perp CA'.

Oblicz pole powierzchni trójkąta BCA'.

Dane
a=25
|BP|=24
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 43.2 (2 pkt)
 Oblicz wysokość tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 44.  4 pkt ⋅ Numer: pp-30319 ⋅ Poprawnie: 60/310 [19%] Rozwiąż 
Podpunkt 44.1 (2 pkt)
 «« W graniastosłupie czworokątnym prawidłowym ABCDA'B'C'D' przekątna ściany bocznej ma długość d i tworzy z płaszczyzną podstawy kąt o mierze \alpha.

Oblicz wysokość tego graniastosłupa.

Dane
d=85
\tan\alpha=\frac{36}{77}=0.46753246753247
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 44.2 (2 pkt)
 Oblicz pole powierzchni trójkąta BC'D.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 45.  4 pkt ⋅ Numer: pp-30320 ⋅ Poprawnie: 9/63 [14%] Rozwiąż 
Podpunkt 45.1 (1 pkt)
 » Podstawą graniastosłupa ABCDA'B'C'D' jest kwadrat o boku długości a, a jego wysokość jest równa h. Punkt P należy do krawędzi BC i dzieli tę krawędź w stosunku |BP|:|PC|=k. Przez punkt P poprowadzono równoległą do przekątnej podstawy BD, która przecięła krawędź CD w punkcie Q.

Oblicz długość odcinka PQ.

Dane
a=20
h=4
k=\frac{1}{4}=0.25000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.2 (2 pkt)
 Oblicz wysokość trójkąta PQA'.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.3 (1 pkt)
 Oblicz pole powierzchni trójkąta PQA'.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 46.  3 pkt ⋅ Numer: pp-20858 ⋅ Poprawnie: 101/944 [10%] Rozwiąż 
Podpunkt 46.1 (2 pkt)
 (2 pkt) Przekątna podstawy prostopadłościanu tworzy z jedną z krawędzi tej podstawy kąt o mierze \alpha taki, że \cos\alpha=\frac{28}{53}. Wysokość tego prostopadłościanu jest 7 razy dłuższa od długości dłuższej z jego krawędzi podstawy.

Oblicz tangens kąta nachylenia przekątnej tego prostopadłościanu do płaszczyzny jego podstawy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 46.2 (1 pkt)
 (1 pkt) Wiedząc, że krótsza krawędź podstawy tego prostopadłościanu ma długość 28, oblicz długość jego przekątnej.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm