Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Graniastosłupy - rozwiązywanie graniastosłupów

Zadania dla klasy trzeciej liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-11419 ⋅ Poprawnie: 357/460 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Podstawą graniastosłupa o wysokości h jest prostokąt o wymiarach a \times b. Zapisz długość przekątnej tego graniastosłupa w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{N}.

Podaj liczby m i n.

Dane
h=2
a=7
b=5
Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11439 ⋅ Poprawnie: 478/837 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Na rysunku pokazano granastosłup prosty, który ma w podstawie prostokąt:
Zapisz wysokość tego graniastosłupa w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Dane
\alpha=30^{\circ}
|AB|=21
|BC|=20
Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-11364 ⋅ Poprawnie: 267/360 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkie krawędzie graniastosłupa prawidłowego trójkątnego mają długość \sqrt{a}. Zapisz pole powierzchni całkowitej tego graniastosłupa w najprostszej postaci \frac{m+n\sqrt{p}}{k}, gdzie m,n,p,k\in\mathbb{Z}.

Podaj liczby m, n, p i k.

Dane
a=10
Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
p= (wpisz liczbę zapisaną dziesiętnie)
k= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11369 ⋅ Poprawnie: 352/473 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wszystkie krawędzie graniastosłupa prawidłowego sześciokątnego mają długość a. Zapisz pole powierzchni całkowitej tego graniastosłupa w najprostszej postaci m+n\sqrt{p}, gdzie m,n,p\in\mathbb{Z}.

Podaj liczbę m, n i p.

Dane
a=13
Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
p= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11521 ⋅ Poprawnie: 387/900 [43%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Stosunek pola powierzchni całkowitej jednego z dwóch sześcianów, do pola powierzchni jednej ściany drugiego sześcianu, jest równy 66. Zapisz stosunek objętości mniejszego z sześcianów do objętości większego sześcianu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-11447 ⋅ Poprawnie: 97/132 [73%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Prostopadłościan P_1 ma wymiary m\times (m+2)\times (m+4), a prostopadłościan P_2 wymiary (m-2)\times m\times (m+2). Objętość prostopadłościanu P_1 jest większa od objetości prostopadłościanu P_2 o p\%.

Podaj liczbę p.

Dane
m=26
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11367 ⋅ Poprawnie: 159/255 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono sześcian.

Podaj miarę stopniową kąta zaznaczonego na rysunku.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11368 ⋅ Poprawnie: 378/509 [74%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Przekątna sześcianu ma długość d. Zapisz objętość tego sześcianu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.

Podaj liczbę a.

Dane
d=12\sqrt{3}=20.78460969082653
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-11363 ⋅ Poprawnie: 218/296 [73%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Kiedy zwiększono o 1 długość każdej krawędzi sześcianu, to pole powierzchni otrzymanej bryły wzrosło o m.

Jaką długość miała krawędź tego sześcianu (przed wydłużeniem)?

Dane
m=\frac{45}{2}=22.50000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-11361 ⋅ Poprawnie: 129/198 [65%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prostopadłościan o wysokości h cm ma w podstawie prostokąt o bokach długości a cm i b cm.

Wyznacz miarę stopniową kąta nachylenia przekątnej tego prostopadłościanu do płaszczyzny jego podstawy.

Dane
h=97\sqrt{3}=168.00892833418110
a=72
b=65
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11362 ⋅ Poprawnie: 256/396 [64%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Trzy kwadraty o boku długości a tworzą powierzchnię boczną graniastosłupa.

Oblicz objętość tego graniastosłupa.

Dane
a=7\sqrt{3}=12.12435565298214
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11366 ⋅ Poprawnie: 234/282 [82%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Graniastosłup ma a krawędzi, b ścian i c wierzchołków, przy czym a+b+c=194.

Wyznacz ilość wierzchołków jego podstawy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  1 pkt ⋅ Numer: pp-11516 ⋅ Poprawnie: 700/971 [72%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Suma długości wszystkich krawędzi sześcianu jest równa 120\sqrt{2}.

Oblicz pole powierzchni całkowitej tego sześcianu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 14.  1 pkt ⋅ Numer: pp-11365 ⋅ Poprawnie: 215/260 [82%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Prostopadłościan P_1 ma wymiary m\times (m+2)\times (m+4), a prostopadłościan P_2 wymiary (m-2)\times m\times (m+2). Objętość prostopadłościanu P_2 jest mniejsza od objetości prostopadłościanu P_1 o p\%.

Podaj liczbę p.

Dane
m=36
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 15.  1 pkt ⋅ Numer: pp-11517 ⋅ Poprawnie: 628/1087 [57%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Przekątna ściany bocznej graniastosłupa trójkątnego prawidłowego ma długość d=24 i tworzy z jego krawędzią boczną kąt o mierze \alpha=30^{\circ}:

Oblicz objętość tego graniastosłupa.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 16.  1 pkt ⋅ Numer: pp-11549 ⋅ Poprawnie: 91/172 [52%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 (1 pkt) W graniastosłupie trójkątnym prawidłowym krawędź boczna jest dwa razy dłuższa od krawędzi podstawy. Suma długości wszystkich krawędzi tego graniastosłupa jest równa 84.

Pole powierzchni całkowitej tego graniastosłupa jest równe:

Odpowiedzi:
A. \frac{588+49\sqrt{3}}{3} B. 588+49\sqrt{3}
C. \frac{588+49\sqrt{3}}{2} D. \frac{1176+98\sqrt{3}}{3}
E. \frac{588+49\sqrt{3}}{4} F. 343
Zadanie 17.  1 pkt ⋅ Numer: pp-11775 ⋅ Poprawnie: 613/904 [67%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Dany jest graniastosłup prawidłowy czworokątny, w którym krawędź podstawy ma długość \frac{7\sqrt{10}}{2}. Przekątna tego graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem \alpha takim, że \cos\alpha=\frac{7\sqrt{5}}{6}.

Długość przekątnej tego graniastosłupa jest równa:

Odpowiedzi:
A. 6 B. 12
C. \frac{6\sqrt{5}}{5} D. 6\sqrt{5}
Zadanie 18.  1 pkt ⋅ Numer: pp-11801 ⋅ Poprawnie: 544/954 [57%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Dany jest graniastosłup prawidłowy sześciokątny ABCDEFA'B'C'D'E'F', w którym krawędź podstawy ma długość 9. Przekątna AD' tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem D'AD o mierze 30^{\circ} (zobacz rysunek).

Pole powierzchni ściany bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. 54 B. 54\sqrt{6}
C. 54\sqrt{3} D. 27\sqrt{3}
E. 162 F. 108\sqrt{3}
Zadanie 19.  1 pkt ⋅ Numer: pp-11847 ⋅ Poprawnie: 501/685 [73%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Dany jest sześcian ABCDEFGH o krawędzi długości 10. Wewnątrz tego sześcianu znajduje się punkt P (zobacz rysunek).

Suma odległości punktu P od wszystkich ścian sześcianu ABCDEFGH jest równa:

Odpowiedzi:
A. \frac{80}{3} B. 15
C. 40 D. 20
E. 50 F. 30
Zadanie 20.  1 pkt ⋅ Numer: pp-11875 ⋅ Poprawnie: 184/243 [75%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Podstawą graniastosłupa prostego jest romb o przekątnych długości 4 cm i 5 cm. Wysokość tego graniastosłupa jest krótsza od dłuższej przekątnej rombu o 1 cm.

Wtedy objętość tego graniastosłupa jest równa:

Odpowiedzi:
A. 20 B. 18
C. 45 D. 15
E. 30 F. \frac{45}{2}
Zadanie 21.  1 pkt ⋅ Numer: pp-11900 ⋅ Poprawnie: 182/211 [86%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Liczba wszystkich krawędzi graniastosłupa jest równa 30.

Liczba wszystkich wierzchołków tego graniastosłupa jest równa:

Odpowiedzi:
A. 18 B. 15
C. 19 D. 21
E. 22 F. 20
Zadanie 22.  1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 134/230 [58%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{27}{10}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 18 B. 26
C. 21 D. 16
E. 24 F. 23
Zadanie 23.  1 pkt ⋅ Numer: pp-11978 ⋅ Poprawnie: 41/69 [59%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Dany jest sześcian \mathcal{F} o krawędzi długości a i objętości V oraz sześcian \mathcal{G} o krawędzi długości 4a.

Objętość sześcianu \mathcal{G} jest równa:

Odpowiedzi:
A. 32V B. \frac{32}{3}V
C. 16V D. \frac{64}{3}V
E. 64V F. 8V
Zadanie 24.  1 pkt ⋅ Numer: pp-12019 ⋅ Poprawnie: 237/364 [65%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Przekątna ściany sześcianu ma długość 9\sqrt{3}. Objętość tego sześcianu jest równa:
Odpowiedzi:
A. \frac{2187\sqrt{3}}{2} B. \frac{2187\sqrt{6}}{2}
C. \frac{2187\sqrt{3}}{4} D. \frac{243\sqrt{6}}{2}
E. \frac{243\sqrt{3}}{4} F. \frac{2187\sqrt{6}}{4}
Zadanie 25.  1 pkt ⋅ Numer: pp-12020 ⋅ Poprawnie: 247/364 [67%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości 20. Przekątna tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem \alpha takim, że \tan\alpha=4 (zobacz rysunek).

Wysokość tego graniastosłupa jest równa:

Odpowiedzi:
A. \frac{160\sqrt{2}}{3} B. 160\sqrt{2}
C. 80 D. 320\sqrt{2}
E. 20\sqrt{2} F. 80\sqrt{2}
Zadanie 26.  1 pkt ⋅ Numer: pp-12047 ⋅ Poprawnie: 53/67 [79%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Przekątna sześcianu ma długość 5\sqrt{3}.

Wtedy objętość tego sześcianu jest równa:

Odpowiedzi:
A. \frac{125}{2} B. \frac{125\sqrt{6}}{6}
C. 125 D. 125\sqrt{2}
E. \frac{125\sqrt{2}}{2} F. 125\sqrt{3}
Zadanie 27.  1 pkt ⋅ Numer: pp-12103 ⋅ Poprawnie: 22/31 [70%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Graniastosłup prawidłowy ma 66 krawędzi. Długość każdej z tych krawędzi jest równa 3.

Pole powierzchni bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. 183 B. 203
C. 180 D. 187
E. 198 F. 179
G. 228 H. 210
Zadanie 28.  1 pkt ⋅ Numer: pp-12130 ⋅ Poprawnie: 23/36 [63%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 6\sqrt{3} (zobacz rysunek).

Pole powierzchni całkowitej tego graniastosłupa jest równe:

Odpowiedzi:
A. 432+648\sqrt{3} B. 648+324\sqrt{3}
C. 432+324\sqrt{3} D. 648+648\sqrt{3}
E. 324+324\sqrt{3} F. 648+324\sqrt{2}
G. 648+216\sqrt{3} H. 648+324\sqrt{6}
Zadanie 29.  1 pkt ⋅ Numer: pp-12131 ⋅ Poprawnie: 13/21 [61%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Przekątna sześcianu jest równa 12\sqrt{3}.

Wynika stąd, że objętość tego sześcianu jest równa:

Odpowiedzi:
A. 3456 B. 5184
C. 2592 D. 576\sqrt{6}
E. 1728 F. 576\sqrt{3}
G. 5184 H. 1728\sqrt{3}
Zadanie 30.  1 pkt ⋅ Numer: pp-12153 ⋅ Poprawnie: 93/127 [73%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Długości trzech wychodzących z jednego wierzchołka krawędzi prostopadłościanu są trzema kolejnymi liczbami naturalnymi nieparzystymi. Najdłuższa krawędź tego prostopadłościanu ma długość 17.

Pole powierzchni całkowitej tego prostopadłościanu jest równe:

Odpowiedzi:
A. 1359 B. 1349
C. 1348 D. 1331
E. 1341 F. 1334
G. 1342 H. 1344
Zadanie 31.  1 pkt ⋅ Numer: pp-12154 ⋅ Poprawnie: 65/126 [51%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Dany jest prostopadłościan ABCDEFGH, w którym podstawy ABCD i EFGH są kwadratami o boku długości 12. Przekątna BH tego prostopadłościanu tworzy z przekątną AH ściany bocznej ADHE kąt o mierze 60^{\circ} (zobacz rysunek).

Przekątna BH tego prostopadłościanu ma długość równą:

Odpowiedzi:
A. 4\sqrt{6} B. 2\sqrt{6}
C. 12 D. 8\sqrt{3}
E. 8 F. 8\sqrt{6}
Zadanie 32.  1 pkt ⋅ Numer: pp-12381 ⋅ Poprawnie: 108/187 [57%] Rozwiąż 
Podpunkt 32.1 (1 pkt)
 Długości trzech krawędzi wychodzących z jednego wierzchołka prostopadłościanu są trzema kolejnymi parzystymi liczbami naturalnymi. Najdłuższa krawędź tego prostopadłościanu ma długość p+13.

Objętość tego prostopadłościanu jest równa:

Odpowiedzi:
A. p^3+45p^2+671p+1287 B. p^3+33p^2+359p+1287
C. p^3+33p^2+355p+1183 D. p^3+35p^2+355p+1287
E. p^3+33p^2+353p+1183 F. p^3+35p^2+359p+1287
Zadanie 33.  1 pkt ⋅ Numer: pp-12398 ⋅ Poprawnie: 271/356 [76%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 Objętość sześcianu jest równa 192\sqrt{3}.

Długość przekątnej tego sześcianu jest równa:

Odpowiedzi:
A. 6 B. 9
C. 8 D. 12\sqrt{2}
E. 12 F. 12\sqrt{3}
G. 4 H. 12\sqrt{6}
Zadanie 34.  2 pkt ⋅ Numer: pp-20794 ⋅ Poprawnie: 41/115 [35%] Rozwiąż 
Podpunkt 34.1 (2 pkt)
 « W sześcianie ABCDA'B'C'D' o krawędzi długości a, punkty P i Q są środkami krawędzi odpowiednio AB i BC, zaś punkt R jest środkiem przekątnej górnej podstawy A'C'.

Oblicz P_{\triangle PQR}.

Dane
a=14\sqrt{2}=19.79898987322333
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 35.  2 pkt ⋅ Numer: pp-20795 ⋅ Poprawnie: 110/305 [36%] Rozwiąż 
Podpunkt 35.1 (2 pkt)
 Wielościan przedstawiony na rysunku jest sześcianem o boku długości a, a punkty A, B i C są środkami parami skośnych jego krawędzi.

Oblicz P_{\triangle ABC}

Dane
a=16\sqrt{2}=22.62741699796952
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 36.  2 pkt ⋅ Numer: pp-20796 ⋅ Poprawnie: 67/343 [19%] Rozwiąż 
Podpunkt 36.1 (1 pkt)
 W graniastosłupie trójkątnym prawidłowym krawędź podstawy ma długość a. Przekątna ściany bocznej tego graniastosłupa tworzy z sąsiednią ścianą boczną kąt o mierze \alpha.

Oblicz długość przekątnej ściany bocznej tego graniastosłupa.

Dane
a=7\sqrt{3}=12.12435565298214
\alpha=30^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.2 (1 pkt)
 Oblicz wysokość tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 37.  2 pkt ⋅ Numer: pp-20797 ⋅ Poprawnie: 52/183 [28%] Rozwiąż 
Podpunkt 37.1 (1 pkt)
 W graniastosłupie trójkątnym prawidłowym ABCA'B'C' punkt P jest środkiem krawędzi AB, a kąt CPC' ma miarę \alpha.

Oblicz wysokość tego graniastosłupa.

Dane
|PC'|=45
\tan\alpha=\frac{3}{4}=0.75000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 37.2 (1 pkt)
 Oblicz pole powierzchni podstawy tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 38.  2 pkt ⋅ Numer: pp-20798 ⋅ Poprawnie: 35/227 [15%] Rozwiąż 
Podpunkt 38.1 (2 pkt)
 » W graniastosłupie trójkątnym prawidłowym ABCA'B'C' krawędzie boczne mają długość h, a trójkąt BCA' ma obwód długości L.

Oblicz wysokość podstawy tego graniastosłupa.

Dane
h=12\sqrt{3}=20.78460969082653
L=60
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 39.  2 pkt ⋅ Numer: pp-20803 ⋅ Poprawnie: 47/149 [31%] Rozwiąż 
Podpunkt 39.1 (2 pkt)
 « W graniastosłupie sześciokątnym prawidłowym krawędź podstawy ma długość a, zaś stosunek długości najdłuższej przekątnej graniastosłupa do najkrótszej przekątnej podstawy jest równy k.

Oblicz wysokość tego graniastosłupa.

Dane
a=9
k=3
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 40.  2 pkt ⋅ Numer: pp-21060 ⋅ Poprawnie: 221/688 [32%] Rozwiąż 
Podpunkt 40.1 (1 pkt)
 Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 4\sqrt{3}.

Pole powierzchni całkowitej tego graniastosłupa jest równe:

Odpowiedzi:
A. 288+144\sqrt{3} B. 288+288\sqrt{3}
C. 288+48\sqrt{3} D. 288+72\sqrt{3}
E. 288+432\sqrt{3} F. 288+36\sqrt{3}
Podpunkt 40.2 (1 pkt)
 Oblicz sinus kąta nachylenia dłuższej przekątnej tego graniastosłupa do płaszczyzny podstawy tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 41.  2 pkt ⋅ Numer: pp-21105 ⋅ Poprawnie: 213/531 [40%] Rozwiąż 
Podpunkt 41.1 (1 pkt)
 Wysokość graniastosłupa prawidłowego sześciokątnego jest równa 6 (zobacz rysunek). Pole podstawy tego graniastosłupa jest równe 216\sqrt{3}.

12Pole powierzchni jednej ściany bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. 96 B. 48\sqrt{3}
C. 48 D. 72\sqrt{3}
E. 72 F. 144
Podpunkt 41.2 (1 pkt)
 Kąt nachylenia najdłuższej przekątnej graniastosłupa prawidłowego sześciokątnego do płaszczyzny jego podstawy jest zaznaczony na rysunku:
Odpowiedzi:
A. C B. B
C. A D. D
Zadanie 42.  4 pkt ⋅ Numer: pp-30312 ⋅ Poprawnie: 25/100 [25%] Rozwiąż 
Podpunkt 42.1 (2 pkt)
 Przekątna prostopadłościanu długości d tworzy z sąsiednimi ścianami bocznymi tego prostopadłościanu kąty o miarach \alpha i \beta.

Oblicz pole powierzchni podstawy tego prostopadłościanu.

Dane
d=104
\cos\alpha=\frac{3\sqrt{17}}{13}=0.95148591360408
\cos\beta=\frac{4\sqrt{10}}{13}=0.97300851082104
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 42.2 (2 pkt)
 Oblicz wysokość tego prostopadłościanu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 43.  4 pkt ⋅ Numer: pp-30315 ⋅ Poprawnie: 16/78 [20%] Rozwiąż 
Podpunkt 43.1 (2 pkt)
 » W graniastosłupie prawidłowym trójkątnym ABCA'B'C' o krawędzi podstawy długości a, punkt P należy do odcinka CA' i spełnia warunek BP\perp CA'.

Oblicz pole powierzchni trójkąta BCA'.

Dane
a=13
|BP|=12
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 43.2 (2 pkt)
 Oblicz wysokość tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 44.  4 pkt ⋅ Numer: pp-30319 ⋅ Poprawnie: 60/310 [19%] Rozwiąż 
Podpunkt 44.1 (2 pkt)
 «« W graniastosłupie czworokątnym prawidłowym ABCDA'B'C'D' przekątna ściany bocznej ma długość d i tworzy z płaszczyzną podstawy kąt o mierze \alpha.

Oblicz wysokość tego graniastosłupa.

Dane
d=58
\tan\alpha=\frac{21}{20}=1.05000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 44.2 (2 pkt)
 Oblicz pole powierzchni trójkąta BC'D.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 45.  4 pkt ⋅ Numer: pp-30320 ⋅ Poprawnie: 9/63 [14%] Rozwiąż 
Podpunkt 45.1 (1 pkt)
 » Podstawą graniastosłupa ABCDA'B'C'D' jest kwadrat o boku długości a, a jego wysokość jest równa h. Punkt P należy do krawędzi BC i dzieli tę krawędź w stosunku |BP|:|PC|=k. Przez punkt P poprowadzono równoległą do przekątnej podstawy BD, która przecięła krawędź CD w punkcie Q.

Oblicz długość odcinka PQ.

Dane
a=16
h=8
k=\frac{1}{4}=0.25000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.2 (2 pkt)
 Oblicz wysokość trójkąta PQA'.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.3 (1 pkt)
 Oblicz pole powierzchni trójkąta PQA'.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 46.  3 pkt ⋅ Numer: pp-20858 ⋅ Poprawnie: 101/944 [10%] Rozwiąż 
Podpunkt 46.1 (2 pkt)
 (2 pkt) Przekątna podstawy prostopadłościanu tworzy z jedną z krawędzi tej podstawy kąt o mierze \alpha taki, że \cos\alpha=\frac{3}{5}. Wysokość tego prostopadłościanu jest 6 razy dłuższa od długości dłuższej z jego krawędzi podstawy.

Oblicz tangens kąta nachylenia przekątnej tego prostopadłościanu do płaszczyzny jego podstawy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 46.2 (1 pkt)
 (1 pkt) Wiedząc, że krótsza krawędź podstawy tego prostopadłościanu ma długość 27, oblicz długość jego przekątnej.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm