Matury CKEMatma z CKESprawdzianyZadania z lekcjiZbiór zadańWyniki uczniów Pomoc

Zaloguj mnie...

Załóż konto...

Graniastosłupy - rozwiązywanie graniastosłupów

Zadania dla klasy trzeciej liceum ogólnokształcącego - poziom podstawowy

 

Zadanie 1.  1 pkt ⋅ Numer: pp-11419 ⋅ Poprawnie: 355/458 [77%] Rozwiąż 
Podpunkt 1.1 (1 pkt)
 Podstawą graniastosłupa o wysokości h jest prostokąt o wymiarach a \times b. Zapisz długość przekątnej tego graniastosłupa w najprostszej postaci m\sqrt{n}, gdzie m,n\in\mathbb{N}.

Podaj liczby m i n.

Dane
h=5
a=7
b=9
Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 2.  1 pkt ⋅ Numer: pp-11439 ⋅ Poprawnie: 476/835 [57%] Rozwiąż 
Podpunkt 2.1 (1 pkt)
 Na rysunku pokazano granastosłup prosty, który ma w podstawie prostokąt:
Zapisz wysokość tego graniastosłupa w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{N}.

Podaj liczby a, b i c.

Dane
\alpha=30^{\circ}
|AB|=11
|BC|=60
Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 3.  1 pkt ⋅ Numer: pp-11364 ⋅ Poprawnie: 266/359 [74%] Rozwiąż 
Podpunkt 3.1 (1 pkt)
 Wszystkie krawędzie graniastosłupa prawidłowego trójkątnego mają długość \sqrt{a}. Zapisz pole powierzchni całkowitej tego graniastosłupa w najprostszej postaci \frac{m+n\sqrt{p}}{k}, gdzie m,n,p,k\in\mathbb{Z}.

Podaj liczby m, n, p i k.

Dane
a=6
Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
p= (wpisz liczbę zapisaną dziesiętnie)
k= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 4.  1 pkt ⋅ Numer: pp-11369 ⋅ Poprawnie: 350/471 [74%] Rozwiąż 
Podpunkt 4.1 (1 pkt)
 Wszystkie krawędzie graniastosłupa prawidłowego sześciokątnego mają długość a. Zapisz pole powierzchni całkowitej tego graniastosłupa w najprostszej postaci m+n\sqrt{p}, gdzie m,n,p\in\mathbb{Z}.

Podaj liczbę m, n i p.

Dane
a=8
Odpowiedzi:
m= (wpisz liczbę zapisaną dziesiętnie)
n= (wpisz liczbę zapisaną dziesiętnie)
p= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 5.  1 pkt ⋅ Numer: pp-11521 ⋅ Poprawnie: 385/898 [42%] Rozwiąż 
Podpunkt 5.1 (1 pkt)
 Stosunek pola powierzchni całkowitej jednego z dwóch sześcianów, do pola powierzchni jednej ściany drugiego sześcianu, jest równy 36. Zapisz stosunek objętości mniejszego z sześcianów do objętości większego sześcianu w najprostszej postaci \frac{a\sqrt{b}}{c}, gdzie a,b,c\in\mathbb{Z}.

Podaj liczby a, b i c.

Odpowiedzi:
a= (wpisz liczbę zapisaną dziesiętnie)
b= (wpisz liczbę zapisaną dziesiętnie)
c= (wpisz liczbę zapisaną dziesiętnie)
Zadanie 6.  1 pkt ⋅ Numer: pp-11447 ⋅ Poprawnie: 97/131 [74%] Rozwiąż 
Podpunkt 6.1 (1 pkt)
 Prostopadłościan P_1 ma wymiary m\times (m+2)\times (m+4), a prostopadłościan P_2 wymiary (m-2)\times m\times (m+2). Objętość prostopadłościanu P_1 jest większa od objetości prostopadłościanu P_2 o p\%.

Podaj liczbę p.

Dane
m=27
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 7.  1 pkt ⋅ Numer: pp-11367 ⋅ Poprawnie: 157/253 [62%] Rozwiąż 
Podpunkt 7.1 (1 pkt)
Na rysunku przedstawiono sześcian.

Podaj miarę stopniową kąta zaznaczonego na rysunku.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 8.  1 pkt ⋅ Numer: pp-11368 ⋅ Poprawnie: 353/468 [75%] Rozwiąż 
Podpunkt 8.1 (1 pkt)
 Przekątna sześcianu ma długość d. Zapisz objętość tego sześcianu w najprostszej postaci a\sqrt{b}, gdzie a,b\in\mathbb{Z}.

Podaj liczbę a.

Dane
d=7\sqrt{3}=12.12435565298214
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 9.  1 pkt ⋅ Numer: pp-11363 ⋅ Poprawnie: 201/266 [75%] Rozwiąż 
Podpunkt 9.1 (1 pkt)
 Kiedy zwiększono o 1 długość każdej krawędzi sześcianu, to pole powierzchni otrzymanej bryły wzrosło o m.

Jaką długość miała krawędź tego sześcianu (przed wydłużeniem)?

Dane
m=\frac{29}{2}=14.50000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 10.  1 pkt ⋅ Numer: pp-11361 ⋅ Poprawnie: 128/197 [64%] Rozwiąż 
Podpunkt 10.1 (1 pkt)
 Prostopadłościan o wysokości h cm ma w podstawie prostokąt o bokach długości a cm i b cm.

Wyznacz miarę stopniową kąta nachylenia przekątnej tego prostopadłościanu do płaszczyzny jego podstawy.

Dane
h=202\sqrt{3}=349.87426312891321
a=198
b=40
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 11.  1 pkt ⋅ Numer: pp-11362 ⋅ Poprawnie: 255/395 [64%] Rozwiąż 
Podpunkt 11.1 (1 pkt)
 « Trzy kwadraty o boku długości a tworzą powierzchnię boczną graniastosłupa.

Oblicz objętość tego graniastosłupa.

Dane
a=4\sqrt{3}=6.92820323027551
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 12.  1 pkt ⋅ Numer: pp-11366 ⋅ Poprawnie: 232/280 [82%] Rozwiąż 
Podpunkt 12.1 (1 pkt)
 Graniastosłup ma a krawędzi, b ścian i c wierzchołków, przy czym a+b+c=140.

Wyznacz ilość wierzchołków jego podstawy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 13.  1 pkt ⋅ Numer: pp-11516 ⋅ Poprawnie: 698/969 [72%] Rozwiąż 
Podpunkt 13.1 (1 pkt)
 Suma długości wszystkich krawędzi sześcianu jest równa 48\sqrt{7}.

Oblicz pole powierzchni całkowitej tego sześcianu.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 14.  1 pkt ⋅ Numer: pp-11365 ⋅ Poprawnie: 214/259 [82%] Rozwiąż 
Podpunkt 14.1 (1 pkt)
 Prostopadłościan P_1 ma wymiary m\times (m+2)\times (m+4), a prostopadłościan P_2 wymiary (m-2)\times m\times (m+2). Objętość prostopadłościanu P_2 jest mniejsza od objetości prostopadłościanu P_1 o p\%.

Podaj liczbę p.

Dane
m=21
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 15.  1 pkt ⋅ Numer: pp-11517 ⋅ Poprawnie: 627/1086 [57%] Rozwiąż 
Podpunkt 15.1 (1 pkt)
 Przekątna ściany bocznej graniastosłupa trójkątnego prawidłowego ma długość d=12 i tworzy z jego krawędzią boczną kąt o mierze \alpha=60^{\circ}:

Oblicz objętość tego graniastosłupa.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 16.  1 pkt ⋅ Numer: pp-11549 ⋅ Poprawnie: 82/161 [50%] Rozwiąż 
Podpunkt 16.1 (1 pkt)
 (1 pkt) W graniastosłupie trójkątnym prawidłowym krawędź boczna jest dwa razy dłuższa od krawędzi podstawy. Suma długości wszystkich krawędzi tego graniastosłupa jest równa 48.

Pole powierzchni całkowitej tego graniastosłupa jest równe:

Odpowiedzi:
A. 112 B. 96+8\sqrt{3}
C. \frac{192+16\sqrt{3}}{3} D. \frac{384+32\sqrt{3}}{3}
E. 48+4\sqrt{3} F. 192+16\sqrt{3}
Zadanie 17.  1 pkt ⋅ Numer: pp-11775 ⋅ Poprawnie: 470/691 [68%] Rozwiąż 
Podpunkt 17.1 (1 pkt)
 Dany jest graniastosłup prawidłowy czworokątny, w którym krawędź podstawy ma długość 4\sqrt{3}. Przekątna tego graniastosłupa jest nachylona do płaszczyzny jego podstawy pod kątem \alpha takim, że \cos\alpha=\frac{2\sqrt{6}}{5}.

Długość przekątnej tego graniastosłupa jest równa:

Odpowiedzi:
A. 20 B. 10
C. \frac{5\sqrt{6}}{3} D. 10\sqrt{6}
Zadanie 18.  1 pkt ⋅ Numer: pp-11801 ⋅ Poprawnie: 437/768 [56%] Rozwiąż 
Podpunkt 18.1 (1 pkt)
 Dany jest graniastosłup prawidłowy sześciokątny ABCDEFA'B'C'D'E'F', w którym krawędź podstawy ma długość 5. Przekątna AD' tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem D'AD o mierze 45^{\circ} (zobacz rysunek).

Pole powierzchni ściany bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. 25\sqrt{2} B. 50
C. 100 D. 50\sqrt{2}
E. \frac{50\sqrt{3}}{3} F. 50\sqrt{3}
Zadanie 19.  1 pkt ⋅ Numer: pp-11847 ⋅ Poprawnie: 450/600 [75%] Rozwiąż 
Podpunkt 19.1 (1 pkt)
 Dany jest sześcian ABCDEFGH o krawędzi długości 6. Wewnątrz tego sześcianu znajduje się punkt P (zobacz rysunek).

Suma odległości punktu P od wszystkich ścian sześcianu ABCDEFGH jest równa:

Odpowiedzi:
A. 18 B. 9
C. 24 D. 30
E. 16 F. 12
Zadanie 20.  1 pkt ⋅ Numer: pp-11875 ⋅ Poprawnie: 126/163 [77%] Rozwiąż 
Podpunkt 20.1 (1 pkt)
 Podstawą graniastosłupa prostego jest romb o przekątnych długości 24 cm i 4 cm. Wysokość tego graniastosłupa jest krótsza od dłuższej przekątnej rombu o 17 cm.

Wtedy objętość tego graniastosłupa jest równa:

Odpowiedzi:
A. 504 B. 224
C. 168 D. 336
E. 252 F. \frac{1008}{5}
Zadanie 21.  1 pkt ⋅ Numer: pp-11900 ⋅ Poprawnie: 131/159 [82%] Rozwiąż 
Podpunkt 21.1 (1 pkt)
 Liczba wszystkich krawędzi graniastosłupa jest równa 51.

Liczba wszystkich wierzchołków tego graniastosłupa jest równa:

Odpowiedzi:
A. 35 B. 30
C. 34 D. 36
E. 32 F. 29
Zadanie 22.  1 pkt ⋅ Numer: pp-11930 ⋅ Poprawnie: 107/199 [53%] Rozwiąż 
Podpunkt 22.1 (1 pkt)
 W graniastosłupie prawidłowym stosunek liczby wszystkich krawędzi do liczby wszystkich ścian jest równy \frac{13}{5}.

Podstawą tego graniastosłupa jest n-kąt foremny. Liczba n jest równa:

Odpowiedzi:
A. 10 B. 16
C. 14 D. 13
E. 23 F. 19
Zadanie 23.  1 pkt ⋅ Numer: pp-11978 ⋅ Poprawnie: 33/54 [61%] Rozwiąż 
Podpunkt 23.1 (1 pkt)
 Dany jest sześcian \mathcal{F} o krawędzi długości a i objętości V oraz sześcian \mathcal{G} o krawędzi długości \frac{7}{2}a.

Objętość sześcianu \mathcal{G} jest równa:

Odpowiedzi:
A. \frac{343}{32}V B. \frac{343}{16}V
C. \frac{343}{24}V D. \frac{343}{48}V
E. \frac{343}{8}V F. \frac{343}{64}V
Zadanie 24.  1 pkt ⋅ Numer: pp-12019 ⋅ Poprawnie: 123/214 [57%] Rozwiąż 
Podpunkt 24.1 (1 pkt)
 Przekątna ściany sześcianu ma długość 10\sqrt{5}. Objętość tego sześcianu jest równa:
Odpowiedzi:
A. 1250\sqrt{10} B. 2500\sqrt{5}
C. 250\sqrt{10} D. 1250\sqrt{5}
E. 125\sqrt{5} F. 2500\sqrt{10}
Zadanie 25.  1 pkt ⋅ Numer: pp-12020 ⋅ Poprawnie: 148/214 [69%] Rozwiąż 
Podpunkt 25.1 (1 pkt)
 Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości 12. Przekątna tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem \alpha takim, że \tan\alpha=6 (zobacz rysunek).

Wysokość tego graniastosłupa jest równa:

Odpowiedzi:
A. 288\sqrt{2} B. 144\sqrt{2}
C. 18\sqrt{2} D. 72\sqrt{2}
E. 72 F. 48\sqrt{2}
Zadanie 26.  1 pkt ⋅ Numer: pp-12047 ⋅ Poprawnie: 16/24 [66%] Rozwiąż 
Podpunkt 26.1 (1 pkt)
 Przekątna sześcianu ma długość 3\sqrt{5}.

Wtedy objętość tego sześcianu jest równa:

Odpowiedzi:
A. \frac{15\sqrt{30}}{2} B. 15\sqrt{15}
C. \frac{15\sqrt{10}}{2} D. \frac{15\sqrt{15}}{2}
E. 15\sqrt{5} F. 45\sqrt{5}
Zadanie 27.  1 pkt ⋅ Numer: pp-12103 ⋅ Poprawnie: 12/19 [63%] Rozwiąż 
Podpunkt 27.1 (1 pkt)
 Graniastosłup prawidłowy ma 42 krawędzi. Długość każdej z tych krawędzi jest równa 4.

Pole powierzchni bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. 251 B. 232
C. 215 D. 217
E. 221 F. 246
G. 224 H. 249
Zadanie 28.  1 pkt ⋅ Numer: pp-12130 ⋅ Poprawnie: 15/23 [65%] Rozwiąż 
Podpunkt 28.1 (1 pkt)
 Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 8\sqrt{5} (zobacz rysunek).

Pole powierzchni całkowitej tego graniastosłupa jest równe:

Odpowiedzi:
A. 1920+960\sqrt{6} B. 1920+960\sqrt{2}
C. 1280+960\sqrt{3} D. 1920+1920\sqrt{3}
E. 1920+960\sqrt{3} F. 1920+640\sqrt{3}
G. 960+960\sqrt{3} H. 1280+1920\sqrt{3}
Zadanie 29.  1 pkt ⋅ Numer: pp-12131 ⋅ Poprawnie: 3/9 [33%] Rozwiąż 
Podpunkt 29.1 (1 pkt)
 Przekątna sześcianu jest równa 16\sqrt{5}.

Wynika stąd, że objętość tego sześcianu jest równa:

Odpowiedzi:
A. \frac{20480\sqrt{15}}{3} B. \frac{20480\sqrt{5}}{9}
C. \frac{20480\sqrt{10}}{9} D. \frac{20480\sqrt{5}}{3}
E. \frac{20480\sqrt{15}}{3} F. \frac{10240\sqrt{15}}{3}
G. \frac{40960\sqrt{15}}{9} H. \frac{20480\sqrt{15}}{9}
Zadanie 30.  1 pkt ⋅ Numer: pp-12153 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 30.1 (1 pkt)
 Długości trzech wychodzących z jednego wierzchołka krawędzi prostopadłościanu są trzema kolejnymi liczbami naturalnymi parzystymi. Najdłuższa krawędź tego prostopadłościanu ma długość 26.

Pole powierzchni całkowitej tego prostopadłościanu jest równe:

Odpowiedzi:
A. 3434 B. 3430
C. 3447 D. 3451
E. 3464 F. 3442
G. 3448 H. 3463
Zadanie 31.  1 pkt ⋅ Numer: pp-12154 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 31.1 (1 pkt)
 Dany jest prostopadłościan ABCDEFGH, w którym podstawy ABCD i EFGH są kwadratami o boku długości 24. Przekątna BH tego prostopadłościanu tworzy z przekątną AH ściany bocznej ADHE kąt o mierze 45^{\circ} (zobacz rysunek).

Przekątna BH tego prostopadłościanu ma długość równą:

Odpowiedzi:
A. 24 B. 12
C. 12\sqrt{2} D. 12\sqrt{6}
E. 24\sqrt{2} F. 48
Zadanie 32.  1 pkt ⋅ Numer: pp-12381 ⋅ Poprawnie: 0/1 [0%] Rozwiąż 
Podpunkt 32.1 (1 pkt)
 Długości trzech krawędzi wychodzących z jednego wierzchołka prostopadłościanu są trzema kolejnymi parzystymi liczbami naturalnymi. Najdłuższa krawędź tego prostopadłościanu ma długość p+8.

Objętość tego prostopadłościanu jest równa:

Odpowiedzi:
A. p^3+20p^2+100p+192 B. p^3+30p^2+296p+192
C. p^3+18p^2+104p+192 D. p^3+20p^2+104p+192
E. p^3+18p^2+100p+128 F. p^3+18p^2+98p+128
Zadanie 33.  1 pkt ⋅ Numer: pp-12398 ⋅ Poprawnie: 14/39 [35%] Rozwiąż 
Podpunkt 33.1 (1 pkt)
 Objętość sześcianu jest równa 135\sqrt{5}.

Długość przekątnej tego sześcianu jest równa:

Odpowiedzi:
A. 3\sqrt{15} B. 3\sqrt{30}
C. 2\sqrt{15} D. 9\sqrt{5}
E. \frac{3\sqrt{15}}{2} F. \frac{9\sqrt{15}}{4}
G. \sqrt{15} H. 9\sqrt{10}
Zadanie 34.  2 pkt ⋅ Numer: pp-20794 ⋅ Poprawnie: 41/115 [35%] Rozwiąż 
Podpunkt 34.1 (2 pkt)
 « W sześcianie ABCDA'B'C'D' o krawędzi długości a, punkty P i Q są środkami krawędzi odpowiednio AB i BC, zaś punkt R jest środkiem przekątnej górnej podstawy A'C'.

Oblicz P_{\triangle PQR}.

Dane
a=26\sqrt{2}=36.76955262170047
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 35.  2 pkt ⋅ Numer: pp-20795 ⋅ Poprawnie: 105/276 [38%] Rozwiąż 
Podpunkt 35.1 (2 pkt)
 Wielościan przedstawiony na rysunku jest sześcianem o boku długości a, a punkty A, B i C są środkami parami skośnych jego krawędzi.

Oblicz P_{\triangle ABC}

Dane
a=8\sqrt{2}=11.31370849898476
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 36.  2 pkt ⋅ Numer: pp-20796 ⋅ Poprawnie: 67/343 [19%] Rozwiąż 
Podpunkt 36.1 (1 pkt)
 W graniastosłupie trójkątnym prawidłowym krawędź podstawy ma długość a. Przekątna ściany bocznej tego graniastosłupa tworzy z sąsiednią ścianą boczną kąt o mierze \alpha.

Oblicz długość przekątnej ściany bocznej tego graniastosłupa.

Dane
a=4\sqrt{3}=6.92820323027551
\alpha=45^{\circ}
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 36.2 (1 pkt)
 Oblicz wysokość tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 37.  2 pkt ⋅ Numer: pp-20797 ⋅ Poprawnie: 52/183 [28%] Rozwiąż 
Podpunkt 37.1 (1 pkt)
 W graniastosłupie trójkątnym prawidłowym ABCA'B'C' punkt P jest środkiem krawędzi AB, a kąt CPC' ma miarę \alpha.

Oblicz wysokość tego graniastosłupa.

Dane
|PC'|=85
\tan\alpha=\frac{13}{84}=0.15476190476190
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 37.2 (1 pkt)
 Oblicz pole powierzchni podstawy tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 38.  2 pkt ⋅ Numer: pp-20798 ⋅ Poprawnie: 35/227 [15%] Rozwiąż 
Podpunkt 38.1 (2 pkt)
 » W graniastosłupie trójkątnym prawidłowym ABCA'B'C' krawędzie boczne mają długość h, a trójkąt BCA' ma obwód długości L.

Oblicz wysokość podstawy tego graniastosłupa.

Dane
h=6\sqrt{3}=10.39230484541326
L=30
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 39.  2 pkt ⋅ Numer: pp-20803 ⋅ Poprawnie: 47/149 [31%] Rozwiąż 
Podpunkt 39.1 (2 pkt)
 « W graniastosłupie sześciokątnym prawidłowym krawędź podstawy ma długość a, zaś stosunek długości najdłuższej przekątnej graniastosłupa do najkrótszej przekątnej podstawy jest równy k.

Oblicz wysokość tego graniastosłupa.

Dane
a=5
k=5
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 40.  2 pkt ⋅ Numer: pp-21060 ⋅ Poprawnie: 187/589 [31%] Rozwiąż 
Podpunkt 40.1 (1 pkt)
 Każda krawędź graniastosłupa prawidłowego sześciokątnego ma długość równą 3\sqrt{5}.

Pole powierzchni całkowitej tego graniastosłupa jest równe:

Odpowiedzi:
A. 270+45\sqrt{3} B. 270+135\sqrt{3}
C. 270+33\sqrt{3} D. 270+67\sqrt{3}
E. 270+405\sqrt{3} F. 270+270\sqrt{3}
Podpunkt 40.2 (1 pkt)
 Oblicz cosinus kąta nachylenia dłuższej przekątnej tego graniastosłupa do płaszczyzny podstawy tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  \cdot
(wpisz trzy liczby całkowite)
Zadanie 41.  2 pkt ⋅ Numer: pp-21105 ⋅ Poprawnie: 143/345 [41%] Rozwiąż 
Podpunkt 41.1 (1 pkt)
 Wysokość graniastosłupa prawidłowego sześciokątnego jest równa 6 (zobacz rysunek). Pole podstawy tego graniastosłupa jest równe 54\sqrt{3}.

6Pole powierzchni jednej ściany bocznej tego graniastosłupa jest równe:

Odpowiedzi:
A. 36 B. 36\sqrt{3}
C. 48 D. 24\sqrt{3}
E. 24 F. 72
Podpunkt 41.2 (1 pkt)
 Kąt nachylenia najdłuższej przekątnej graniastosłupa prawidłowego sześciokątnego do płaszczyzny jego podstawy jest zaznaczony na rysunku:
Odpowiedzi:
A. A B. D
C. C D. B
Zadanie 42.  4 pkt ⋅ Numer: pp-30312 ⋅ Poprawnie: 25/100 [25%] Rozwiąż 
Podpunkt 42.1 (2 pkt)
 Przekątna prostopadłościanu długości d tworzy z sąsiednimi ścianami bocznymi tego prostopadłościanu kąty o miarach \alpha i \beta.

Oblicz pole powierzchni podstawy tego prostopadłościanu.

Dane
d=41
\cos\alpha=\frac{3\sqrt{73}}{41}=0.62517100575494
\cos\beta=\frac{\sqrt{1105}}{41}=0.81076927505340
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 42.2 (2 pkt)
 Oblicz wysokość tego prostopadłościanu.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 43.  4 pkt ⋅ Numer: pp-30315 ⋅ Poprawnie: 16/77 [20%] Rozwiąż 
Podpunkt 43.1 (2 pkt)
 » W graniastosłupie prawidłowym trójkątnym ABCA'B'C' o krawędzi podstawy długości a, punkt P należy do odcinka CA' i spełnia warunek BP\perp CA'.

Oblicz pole powierzchni trójkąta BCA'.

Dane
a=85
|BP|=84
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 43.2 (2 pkt)
 Oblicz wysokość tego graniastosłupa.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 44.  4 pkt ⋅ Numer: pp-30319 ⋅ Poprawnie: 60/309 [19%] Rozwiąż 
Podpunkt 44.1 (2 pkt)
 «« W graniastosłupie czworokątnym prawidłowym ABCDA'B'C'D' przekątna ściany bocznej ma długość d i tworzy z płaszczyzną podstawy kąt o mierze \alpha.

Oblicz wysokość tego graniastosłupa.

Dane
d=145
\tan\alpha=\frac{144}{17}=8.47058823529412
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 44.2 (2 pkt)
 Oblicz pole powierzchni trójkąta BC'D.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 45.  4 pkt ⋅ Numer: pp-30320 ⋅ Poprawnie: 9/63 [14%] Rozwiąż 
Podpunkt 45.1 (1 pkt)
 » Podstawą graniastosłupa ABCDA'B'C'D' jest kwadrat o boku długości a, a jego wysokość jest równa h. Punkt P należy do krawędzi BC i dzieli tę krawędź w stosunku |BP|:|PC|=k. Przez punkt P poprowadzono równoległą do przekątnej podstawy BD, która przecięła krawędź CD w punkcie Q.

Oblicz długość odcinka PQ.

Dane
a=8
h=16
k=\frac{1}{4}=0.25000000000000
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.2 (2 pkt)
 Oblicz wysokość trójkąta PQA'.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 45.3 (1 pkt)
 Oblicz pole powierzchni trójkąta PQA'.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Zadanie 46.  3 pkt ⋅ Numer: pp-20858 ⋅ Poprawnie: 101/944 [10%] Rozwiąż 
Podpunkt 46.1 (2 pkt)
 (2 pkt) Przekątna podstawy prostopadłościanu tworzy z jedną z krawędzi tej podstawy kąt o mierze \alpha taki, że \cos\alpha=\frac{5}{13}. Wysokość tego prostopadłościanu jest 4 razy dłuższa od długości dłuższej z jego krawędzi podstawy.

Oblicz tangens kąta nachylenia przekątnej tego prostopadłościanu do płaszczyzny jego podstawy.

Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)
Podpunkt 46.2 (1 pkt)
 (1 pkt) Wiedząc, że krótsza krawędź podstawy tego prostopadłościanu ma długość 5, oblicz długość jego przekątnej.
Odpowiedź:
Wpisz odpowiedź:  (liczba zapisana dziesiętnie)

☆ ⇒ [ Matma z CKE ] - zadania z matur z ostatnich lat

Masz pytania? Napisz: k42195@poczta.fm